
Spring 2017 Programming Languages Qualifying Exam

CODE_______________________________

This is a closed book test.

Correct, clear and precise answers receive full marks

Please start a new page for each question.

There are five (5) questions

1 | P a g e

Spring 2017 Programming Languages Qualifying Exam

1. Dynamic Typing of Variables (20 points)

Many scripting languages utilize dynamic type checking.

a) What is dynamic type checking?

b) How does dynamic type checking differ from static type checking?

c) Provide a reasonable explanation for how dynamic type checking is
performed. Please be clear about how a dynamic type is stored and
checked.

a) dynamic type checking is a process to improve reliability in operating a
computer code. Dynamic type checking is where the type of a variable is
checked during run time to ensure that the proper operation(s) are being
performed on it. Many “scripting languages” utilize dynamic type
checking and especially those that are object oriented. An example
includes
X=2 # x is now an integer
X=”TEST” # x is now a string
X = new STACK() # is now a stack

2 | P a g e

Spring 2017 Programming Languages Qualifying Exam

at any time, when x is referenced, the runtime system must deploy code
to ensure that the operations are proper

b) static type checking is always done prior to runtime – usually during
compilation of code. Static type checking also aids in reliability ensuring
that operations are coded properly. Usually a static type will be assigned
to a memory variable during compilation and the compiler will use rules to
ensure that the operations are proper before the program is run

c) dynamic type checking means that the type of the element has to be
determined and checked during runtime. The only reasonable place to
store this information is in the heap where additional information is
allocated during assignment. Use of the data segment is not dynamic and
so a dymic type may need more storage that was statically defined. If it is
allocated on the run-time stack, then the data can be dynamic, but on
function return, no references should be made to the object on the stack
as it is likely changed by some other activation records.

3 | P a g e

Spring 2017 Programming Languages Qualifying Exam

2. Memory Mapping (20 points)
Consider the following C code which was compiled with gcc and run on a
Linux platform. Explain the output as it relates to the standard runtime
memory layout. Explain what memory segments the three assignment
statements are accessing.

char * A="T";
void foo(char *C) {
 static char D[1];
 printf("A is at %ul\n",A);
 printf("&A is at %ul\n",&A);
 printf("C is at %ul\n",C);
 printf("&C is at %ul\n",&C);
 printf("D is at %ul\n",D);
 printf("&D is at %ul\n",&D);
 A[0]=1; // causes Segment Fault
 C[2]=1; // no segmentation fault
 D[2]=1; // no segmentation fault
}
main ()
{
 char B[1];
 printf("B is at %ul\n",B);
 printf("&B is at %ul\n",&B);
 foo (B);
}

B is at 1377329791l
&B is at 1377329791l
A is at 4196052l
&A is at 6295616l
C is at 1377329791l
&C is at 1377329752l
D is at 6295628l
&D is at 6295628l

A and D are in the DATA segment. Since A is initialized to a
constant, which resides in the code segment. B and C are on the
runtime stack. B and D are uninitialized and gcc sets their reference
back to the same cell, which allows the runtime system to catch this
error. C is set to B during the call function. The A reference is
attempting to update values in the code segment, which is a runtime
error. C and D are referencing space on the stack and data
segements, which are allocated space by the OS a page at a time.

4 | P a g e

Spring 2017 Programming Languages Qualifying Exam

3. Parameters that are Subprograms (20 points)

Assume S() is a subroutine with a non-local variable called x as shown below.
Further assume you are using a programming language (like javascript) which
allows for embedded subroutines. Give examples of how x is resolved in
memory when S() is a parameter to a function and then called via the formal
parameter

…
 function F(G) {
 …. G(); // somewhere in the context of F,
 // G is called as a subroutine/function
 }

 function S(){
 print x ; //x is non-local
 }

 … F(S); // function S() is a parameter of F.

ANSWER:
One such solution can be found in the sebasta book

function sub1() {
 var x;
 function sub2() {
 alert(x); // creates a dialog box with the value of x
 };

 function sub3() {
 var x;
 x=3;
 sub4(sub2);
 };
 function sub4(subx) {
 var x;
 x=4;
 subx();
 };
 x=1;
 sub3();
 };

5 | P a g e

Spring 2017 Programming Languages Qualifying Exam

DEEP → 1
SHALLOW → 4
AD HOC → 3

6 | P a g e

Spring 2017 Programming Languages Qualifying Exam

4. Method Activation (20 points)

Consider the following C++ code. What is the output?

class A {
 public: void f() { cout << "A::f "; }
 virtual void g() { cout << "A::g "; f(); }
}; // of class A

class B : public A {
 public: void f() { cout << "B::f "; }
 void g() { cout << "B::g "; f(); }
}; // of class B

int main() {
 A a;
 B b;
 A *x = &b;
 a.g(); cout << endl;
 b.f(); cout << endl;
 x->f(); cout << endl;
 x->g(); cout << endl;
}

A::g A::f
B::f
A::f
B::g B::f

7 | P a g e

Spring 2017 Programming Languages Qualifying Exam

5. PYTHON – Consider the following python code. (20 points)

a) What is the output of the following python code?

List = [6,7,10,5,2,1,8,5]
s = reduce(lambda x,y: x if (x > y) else y, list)
print(s)

 10

b) Write a lambda function which squares its input.

 square_func = lambda x: x**2

c) Write a lambda function which takes a function (F) and an integer (m) as
parameters and returns the value of F applied to m

lambda F,m: F(m)

d) What is the output of the following python code?

def mystery(L):
 if not L:

 return L
if len(L) == 1:
 return L
if reduce (lambda x,y: x or y , map(lambda x: x==L[0], L[1:]), False):
 return mystery(L[1:])

 else:
 return [L[0]] + mystery(L[1:])

foo = [2, 2, 2, 3 , 4 , 2]
foo.append(3)
print foo
print mystery(foo)

[2,2,2,3,4,2,3]
[2,3,4]

8 | P a g e

